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This paper documents predictable time-variation in stock market Sharpe ratios.
Predetermined financial variables are used to estimate both the conditionalmean and
volatility of equity returns, and these moments are combined to estimate the con-
ditional Sharpe ratio, or the Sharpe ratio is estimated directly as a linear function of
these same variables. In sample, estimated conditional Sharpe ratios show substantial
time-variation that coincides with the phases of the business cycle. Generally, Sharpe
ratios are low at the peak of the cycle and high at the trough. In an out-of-sample
analysis, using 10-year rolling regressions, relatively naive market-timing strategies
that exploit this predictability can identify periods with Sharpe ratios more than
45% larger than the full sample value. In spite of the well-known predictability of
volatility and the more controversial forecastability of returns, it is the latter factor
that accounts primarily for both the in-sample and out-of-sample results.
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1. Introduction

The empirical literature contains awealth of evidence onpredictable variation

in the mean and volatility of equity returns.1 Given the apparent joint

*Corresponding author.
1See, for example, Breen et al. (1989), Fama and French (1989), Kandel and
Stambaugh (1990), Keim and Stambaugh (1986), and Schwert (1989).
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predictability of the mean and volatility, it is perhaps somewhat surprising

that the literature has been relatively silent on predictable variation in equity

market Sharpe ratios.2 Of course, predictable variation in the individual

moments does not imply predictable variation in the Sharpe ratio. The key

question is whether these moments move together, leading to Sharpe ratios

which are more stable and potentially less predictable than the two com-

ponents individually. The empirical evidence on this issue is somewhatmixed.

Earlier work (e.g., French et al., 1987) suggests a weak positive relation

between expected returns and volatility.However, other studies (e.g.,Glosten

et al., 1993;Whitelaw, 1994; Boudoukh et al., 1997) appear to uncover amore

complex relation. Specifically, on an unconditional basis, several empirical

specifications, including a modified GARCH-M model and nonparametric

kernel estimation, suggest a negative relation between the conditional mean

and volatility of returns. This evidence would indicate the likelihood of sub-

stantial predictable variation in market Sharpe ratios.

Time-variation in stock market Sharpe ratios is of interest for a number of

reasons. First, the Sharpe ratio is popular for performance evaluation in an

asset management context, and the unconditional Sharpe ratio of the market

is often used as a convenient benchmark. If this ratio shows substantial

predictable variation, then this variation needs to be accounted for when

using the market as a performance benchmark. Second, time-variation in the

market Sharpe ratio might provide clues to the fundamental economics

underlying the economy and asset pricing. For example, the Sharpe ratio

could indicate the timing and magnitude of fluctuations in risk aversion in a

representative agent framework. Third, mean-variance investors would have

an obvious interest in predictable Sharpe ratios as this variation could

potentially lead to optimal trading strategies that differ markedly from

simple buy-and-hold strategies. For example, in a partial equilibrium set-

ting, the Sharpe ratio determines the fraction of wealth that an agent invests

in the risky market portfolio.3

This paper provides an empirical investigation of time-variation in

monthly, equity market Sharpe ratios over the sample period May 1953 to

December 2010. We employ two different, but related, methodologies to

2An exception is Kandel and Stambaugh (1990), who investigated the implications of con-
ditional moments of consumption growth for the price of risk over one-quarter and five-year
horizons.
3See, for example, Kandel and Stambaugh (1996), who focused on the predictability of
expected returns and its effect on asset allocation, and Fleming et al. (2001), who focused on
the value of information about time-varying variances and covariances of returns.
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come up with four different estimated conditional Sharpe ratios. In the first

methodology, the conditional mean and volatility of equity returns are

modeled as linear functions of the four predetermined financial variables

used in Whitelaw (1994) plus lagged realized volatility. The ratio of these

moments provides the estimate of the conditional Sharpe ratio. In order to

decompose the predictability of the Sharpe ratio, we also consider two

special cases of the above estimate in which either the mean or volatility is

fixed at its unconditional average, and the other moment is allowed to vary

over time. The second methodology estimates the conditional Sharpe ratio

directly by projecting the monthly realized Sharpe ratio on to the same set of

five variables. We examine the forecasting power of these estimates on both

an in-sample and out-of-sample basis.

In sample estimated conditional Sharpe ratios exhibit substantial time-

variation, with monthly values generally in the range of �0.2 to 0.9. Esti-

mates from the ratio of the conditional moments exhibit similar patterns to

those from direct estimation of the Sharpe ratio, with a correlation between

the two series of approximately 0.9, but the latter are substantially higher

due to the negative correlation between returns and volatility. Interestingly,

the fixed-volatility estimate tracks the unconstrained estimates closely,

while the fixed-mean estimate is much less variable and less correlated with

its counterparts that allow expected returns to vary over time. Thus, these

unconstrained estimates are clearly driven primarily by variation in the

conditional expected return. The unconstrained conditional Sharpe ratios

vary with the business cycle, peaking at business cycle troughs and declining

over the course of the expansionary phase of the cycle. For example, the

average increase in the conditional Sharpe ratio, estimated as the ratio of

the conditional moments of returns, between the peak of the cycle and the

subsequent trough is 0.25 (more than 0.85 on an annualized basis); therefore,

the estimated risk-return tradeoff is much more favorable after recessions.

Regressions of realized Sharpe ratios on the estimates show substantial

predictive power, but the conditional unbiasedness of the forecasts can

generally be rejected.

On an out-of-sample basis, using l0-year rolling regressions, estimated

conditional Sharpe ratios again show statistically and economically signifi-

cant predictive power for realized Sharpe ratios in spite of the fact that the

rolling coefficients exhibit substantial instability. However, the slope coef-

ficients in regressions of the realized ratio on the forecasts are much lower

than for the in-sample exercise and are much lower than one, indicating

substantial overfitting. Nevertheless, the forecasts provide valuable
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information in the context of a relatively naive market-timing strategy,

significantly outperforming a buy-and-hold strategy. These active trading

strategies involve switching between the market and the risk-free asset

depending on the level of the estimated Sharpe ratio relative to a specific

threshold. The average realized Sharpe ratios of the months in the market

are compared to that of the buy-and-hold strategy, and they exhibit

improvements of as much as 45%. Using ex post Sharpe ratios computed

using monthly returns, these improvements are even more impressive,

ranging up to 150%. Of equal importance, as the threshold for the con-

ditional Sharpe ratio increases, so does the Sharpe ratio of the active

strategy. Interestingly, forecasts based on the ratio of the conditional

moments appear to perform the best, and there is little difference between

the forecast that models volatility with the full set of conditioning variables

and the one that uses simply the average volatility over the prior 10 years.

This result complements results showing the economic value of volatility

timing in an asset allocation context (e.g., Fleming et al., 2001).

There are two possible interpretations of these results. First, they could

be a product of mispricing, perhaps induced by fluctuations in consumer

sentiment associated with business cycle fluctuations. In other words, at the

peak of the cycle, over-optimistic investors could be overpricing stocks

leading to poor future tradeoffs between risk and return, with the reverse

happening at the trough of the cycle. If so, this paper provides a framework

for analyzing and exploiting this inefficiency in order to generate superior

performance. Second, the empirical results could be due to rational, but not

perfectly correlated, time-variation in the conditional moments of returns.

For example, if aggregate risk aversion changes over the cycle, decreasing

during expansions and increasing during recessions, as might be implied by a

habit model such as Campbell and Cochrane (1999), that would produce

results generally in line with those reported in the paper. Alternatively, the

world may resemble the ICAPM framework of Merton (1973), where time-

varying investment opportunities generate an additional source of priced

risk. For example, Whitelaw (2000) develops an equilibrium model in which

the mean and volatility of market returns do not move together, implying

substantial, rational, time-variation in stock market Sharpe ratios due to

time-varying probabilities of regime switches.

The remainder of the paper is organized as follows. Section 2 provides a

theoretical discussion and a setting to interpret time-varying Sharpe ratios.

Section 3 introduces the estimation methodology and documents the econ-

omic and statistical significance of in-sample time-variation in stock market
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Sharpe ratios. In Section 4, the out-of-sample analysis is performed, and the

performance of stylized market-timing strategies is examined. Section 5

concludes.

2. Theoretical Background

Harrison and Kreps (1979) show that the absence of arbitrage implies the

existence of a pricing kernel, or stochastic discount factor ðMtÞ, that prices
all assets. Specifically, the expected value of the product of the pricing kernel

and the gross asset return ðRtÞ must equal unity, i.e.,

Et½Mtþ1Rtþ1� ¼ 1; ð1Þ
where Et is the expectation based on information available at time t.

Applying Equation (1), the one-period risk-free interest rate (Rft) can be

written as the inverse of the expectation of the pricing kernel

Rtþ1 ¼ Et ½Mtþ1��1: ð2Þ
Equation (1) also implies that the expected risk premium on any asset is

proportional to the conditional covariance of its return with the pricing

kernel, i.e.,

Et ½Rtþ1 � Rft � ¼ �Rft covt½Mtþ1Rtþ1�; ð3Þ
where covt is the covariance conditional on information available at time t.

Consequently, the conditional Sharpe ratio of any asset, defined as the ratio

of the conditional mean excess return to the conditional standard deviation

of this return, can be written in terms of the volatility of the pricing kernel

and the correlation between the pricing kernel and the return as shown in

Equation (4).

Et½Rtþ1 � Rft�
�t ½Rtþ1 � Rft�

¼ �Rftcovt½Mtþ1Rtþ1�
�t½Rtþ1�

¼ �Rft�t ½Mtþ1� corrt½Mtþ1Rtþ1�; ð4Þ

where �t and corrt are the standard deviation and correlation, conditional on

information at time t, respectively.

Denoting the conditional Sharpe ratio of the stock market at time t by St,

Equation (4) shows that this ratio is proportional to the product of the

volatility of the pricing kernel and the correlation between the pricing kernel

and the return on the market ðRmt)

St �
Et ½Rmtþ1 � Rft�
�t½Rmtþ1 � Rft�

¼ �Rft�t½Mtþ1� corrt½Mtþ1Rmtþ1�; ð5Þ
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Intuitively, if the Sharpe ratio varies substantially over time, then this

variation is attributable to variation in the conditional volatility or con-

ditional correlation. Note that Rft is the gross, risk-free rate, which has

varied between 1.00 and 1.02 for monthly, US data.

Consider first the conditional correlation in Equation (5). The impli-

cations for time-variation in the Sharpe ratio depend critically on the

modeling of the pricing kernel. One approach is to specifyMt as a function of

asset returns. For example, modeling the pricing kernel as a linear function

of the market return produces the conditional CAPM. Risk aversion implies

a negative coefficient on the market return; therefore, the correlation is �1

and the market Sharpe ratio is approximately constant over time. Alter-

natively, modeling the discount factor as a quadratic function of the market

return gives the conditional three-moment CAPM, first proposed by Kraus

and Litzenberger (1976).4 This specification allows for some time-variation

in market Sharpe ratios due to the pricing of skewness risk, but the corre-

lation will still be pushed towards �1. Bansal and Viswanathan (1993)

estimate the pricing kernel as a general, nonlinear function of the market

return, but again time-variation in the correlation is limited by a specifi-

cation which relies on variation in market returns to proxy for variation in

the discount factor. A slightly different approach to generalizing the one-

factor, conditional CAPM, without abandoning a linear specification, is to

model the pricing kernel as a linear function of multiple asset returns. Based

on explanatory and predictive power, a number of additional factors,

including small firm returns and return spreads between long-term and

short-term bonds, have been proposed and tested.5 However, as above,

correlations between the discount factor and the market return tend to be

relatively stable, implying stability in the stock market Sharpe ratio.

A second branch of the literature, using results from a representative

agent, exchange economy (Lucas, 1978), models the pricing kernel as the

marginal rate of substitution over consumption. The resulting consumption

CAPM has been analyzed and tested in numerous contexts.6 While the

consumption CAPM literature is voluminous, there has been relatively little

4Note that these models can also be derived by imposing restrictions on a representative
agent’s utility function. Harvey and Siddique (2000) provide an empirical investigation of
these specifications and a more detailed discussion of the underlying theory.
5Among the numerous papers on this topic are Campbell (1987), Chen et al. (1986), and
Fama and French (1993).
6See, for example, Hansen and Singleton (1983), Breeden et al. (1989), and Ferson and
Harvey (1992).
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attention paid to the implications of the model for the risk/return relation.7

Intuitively, when the marginal rate of substitution depends on consumption

growth and the stock market is modeled as a claim on aggregate consump-

tion, one might expect the correlation and the Sharpe ratio to be relatively

stable. In fact, Whitelaw (2000) shows that this result holds when con-

sumption growth follows an autoregressive process. However, in a two-

regime model, where mean consumption growth differs across the regimes

and the probabilities of regime shifts are time-varying, this intuition is

overturned. In this setting, the mean and volatility of market returns can be

negatively correlated. Although the magnitude and variation of the market

Sharpe ratio are not investigated, it is clear that the model implies econ-

omically significant time-variation. It is important to note that the regimes

correspond loosely to the expansionary and contractionary phases of the

business cycle. Moreover, volatility and expected returns at any point in

time depend critically on the probability of a regime shift. Consequently,

this model predicts business cycle related variation in Sharpe ratios and

large movements around transitions between the phases of the cycle.

A different approach is to modify the preferences of the representative

agent. In the external habit model of Campbell and Cochrane (1999), utility

depends on the deviation of consumption from a reference level. As con-

sumption falls towards this reference level, for example during a recession,

the effective risk aversion of the agent can increase dramatically, thus

increasing the volatility of the pricing kernel in Equation (5). Through this

type of mechanism, time-varying risk aversion can create business cycle

variation in the Sharpe ratio.

3. Time-Variation in Market Sharpe Ratios

In this section, we first provide a brief description of the data, and we then

turn to an explanation of the methodologies for estimating the conditional

Sharpe ratio of market returns. The following subsection presents the in-

sample empirical results.

3.1. The data

For this analysis, both the mean and volatility of stock market returns are

estimated as functions of predetermined financial variables. Four

7One exception is Kandel and Stambaugh (1990), who constructed a four-state model of the
mean and volatility of consumption growth. In their framework, the price of risk shows
business cycle variation at long horizons due to variation in investment opportunities.
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variables ��� the Baa-Aaa spread (DEF), the commercial paper-Treasury

spread (CP), the one-year Treasury yield (1YR), and the dividend yield

(DIV) ��� are chosen based on their proven predictive power in earlier

studies. The DEF, CP, and 1YR are obtained from the Federal Reserve

Statistical Release. Data on the dividend-price ratio, i.e., the dividend yield

are available on Robert Shiller’s website.8 All data are monthly and cover

the period April 1953 to November 2010.

In addition to the four financial variables, the analysis uses monthly and

daily returns on the value-weighted market portfolio from the CRSP data

files from April 1953 to December 2010. Monthly excess returns are calcu-

lated by subtracting the monthly yield on a three-month T-bill from the

corresponding stock return. The three-month yield is used instead of the one-

month yield because of the well-documented idiosyncrasies in this latter time

series (see Duffee, 1996).

3.2. Estimating Sharpe ratios

The first step in the analysis is to determine if there is significant time-

variation in monthly estimated conditional and realized Sharpe ratios, and,

further, to see if the variation in these two series coincides. To compute the

realized Sharpe ratio, we first calculate the realized volatility on a monthly

basis using the sum of squared daily returns within the month:

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
n¼1

R2
n;t

vuut ; ð6Þ

where vt is the realized volatility for month t and Rn;t are daily returns on the

VW portfolio within the month. Adjusting for the daily, within-month mean

return or subtracting the daily risk-free rate has no meaningful effect on the

results. The realized volatility series is winsorized at the 99th percentile to

eliminate a few obvious outliers. For example, the monthly realized volati-

lities in October 1987 and October 2008 exceed 23% (approximately 80% on

an annualized basis). Moreover, these observations are more than eight

standard deviations away from the mean of the series. The monthly realized

Sharpe ratio for month t is then computed as

St �
Rt � Rf ;t�1

vt
; ð7Þ

8http://www.econ.yale.edu/�shiller/data.htm.
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where Rt is the monthly return on the VW portfolio and Rf ;t�1 is the cor-

responding monthly, risk-free rate at the beginning of the month.

We estimate the conditional Sharpe ratio using two different method-

ologies ��� (i) we estimate the first two conditional moments of returns

separately and then take the ratio, and (ii) we estimate the conditional

Sharpe ratio directly using a regression with the realized Sharpe ratio as the

dependent variable. For the first methodology, expected returns are esti-

mated by regressing excess returns on a vector of predetermined variables,

and the conditional volatility is estimated by projecting realized volatility on

to the same set of variables. Specifically, the conditional moments are

modeled as follows:

Et ½Rtþ1 � Rft� ¼ Xt�1; ð8Þ
SDt½Rtþ1� ¼ Xt�2; ð9Þ

where SDt is the conditional standard deviation, and the corresponding

regressions are specified as

Rtþ1 � Rft ¼ Xt�1 þ "1tþ1; ð10Þ
vtþ1 ¼ Xt�2 þ "2tþ1: ð11Þ

The conditioning variables are chosen based on the results in Whitelaw

(1994), with the addition of lagged realized volatility as a conditioning

variable in both equations. Specifically, we regress returns and realized

volatility on the DEF, DIV, 1YR, CP, and lagged realized volatility (vt).

Fitted values from Equations (10) and (11), can be used to compute

conditional Sharpe ratios for each month. Specifically, based on information

available at time t and parameter estimates from the estimation, the esti-

mated conditional Sharpe ratio is

Ŝ1;t ¼
Et½Rtþ1 � Rft�
SDt ½Rtþ1�

¼ Xt�̂1

Xt�̂2

; ð12Þ

where the subscript 1 on the Sharpe ratio is to distinguish it from other

estimates to be defined later.

Two alternative estimates of the conditional Sharpe ratio in

Equation (12) shut down variation in one of the two conditional moments of

returns, i.e.,

Ŝ2;t ¼
Rtþ1 � Rft

Xt �̂2

ð13Þ
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Ŝ3;t ¼
Xt �̂1

vtþ1

: ð14Þ

The conditional moment is replaced with the unconditional, in-sample mean

of either excess returns or realized volatility. This estimate is equivalent to

replacing the vector of conditioning variables in the regressions in

Equations (10) and (11) with just a constant. In an out-of-sample context,

these alternatives might outperform the more general specification due to

overfitting or estimation error. In sample, they provide a decomposition of

the estimated Sharpe ratio into its constituents.

Our second approach to estimating the conditional Sharpe ratio is to

regress the realized Sharpe ratio from Equation (7) on the same set of pre-

determined variables used to estimate the conditional moments of returns

above:

Stþ1 ¼ Xt�3 þ "3tþ1: ð15Þ
The corresponding fitted conditional Sharpe ratio is

Ŝ4;t ¼ Xt�̂3: ð16Þ
Thus, we now have four estimates in total: Equations (12)�(14) and (16).

3.3. Empirical results

Table 1, Panel A presents monthly results for the full sample period, May

1953 to December 2010 from the estimation of the conditional moments of

returns based on the regressions in Equations (10) and (11). The results are

broadly consistent with those reported in the literature. Both the dividend

yield and the one-year Treasury rate are significant predictors of the market

return at the 1% level. Lagged realized volatility has a negative, albeit small

and statistically insignificant, coefficient. To the extent that this variable is

a proxy for conditional volatility, this result coincides with the inability of

many studies to find a significantly positive risk-return relation at the

market level.9 The R-squared of slightly less than 3% is lower than that

reported in some previous studies, but the sample, which includes the recent

financial crisis, may account for this result. (We examine this question in

more detail below.)

In the volatility equation, lagged realized volatility, DEF, DIV, and CP

are all highly significant. The significant positive serial correlation in realized

9See, for example, Guo and Whitelaw (2006) for an extended discussion and possible resol-
ution of this puzzle.
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volatility is a manifestation of the autoregressive conditional hetero-

skedasticity of monthly returns. Realized volatility is much more predictable

than returns, with an R-squared exceeding 50%.

To examine the influence of the financial crisis on the regression results,

we re-estimate the same specification ending the sample in December 2007,

with the results reported in Table 1, Panel B. For this shorter sample, the

coefficients are somewhat similar, but the default spread is now significant in

the mean equation, and the one-year Treasury rate is significant at the 10%

level in the volatility equation. Of perhaps greater interest, the R-squared in

the mean equation increases to more than 4%. For the majority of the results

Table 1. Estimation of the conditional first and second moments of returns.

Const. vt DEF DIV 1YR CP R2

Panel A: Full Sample

Mean �0.194 �0.057 0.624 0.553*** �0.225*** �0.365 2.75%
(0.687) (0.140) (0.642) (0.181) (0.081) (0.728)

Volatility 1.534*** 0.585*** 0.769*** �0.331*** �0.006 0.512*** 54.37%
(0.176) (0.034) (0.145) (0.054) (0.020) (0.145)

Panel B: Pre-Crisis Sample

Mean �0.772 0.079 1.479** 0.505*** �0.340*** �0.056 4.01%
(0.597) (0.131) (0.585) (0.183) (0.075) (0.749)

Volatility 1.600*** 0.568*** 0.412*** �0.309*** 0.037* 0.471*** 47.14%
(0.165) (0.039) (0.143) (0.051) (0.021) (0.148)

Panel C: Full Sample, Adjusted Dividend Yield

Mean 1.623*** �0.150 0.577 0.781*** �0.199** �0.031 2.97%
(0.611) (0.134) (0.628) (0.229) (0.081) (0.689)

Volatility 0.677*** 0.650*** 0.603*** �0.180*** �0.030 0.260* 52.36%
(0.126) (0.036) (0.148) (0.059) (0.020) (0.150)

Panel D: Full Sample, Dividend Plus Repurchase Yield

Mean �0.833 �0.097 0.309 0.789*** �0.280*** �0.192 3.43%
(0.712) (0.135) (0.659) (0.190) (0.081) (0.695)

Volatility 1.387*** 0.632*** 0.730*** �0.245*** �0.003 0.321** 52.99%
(0.188) (0.034) (0.145) (0.052) (0.021) (0.145)

Note : Regressions of monthly, excess stock returns and realized volatilities for the CRSP VW
index on lagged explanatory variables for the full sample, May 1953 to December 2010, and
the pre-crisis sample, May 1953 to December 2007. The conditioning variables are lagged
realized volatility (vt); the Baa-Aaa spread (DEF); the dividend yield (DIV), the adjusted
dividend yield, or the dividend plus repurchase yield; the one-year Treasury yield (lYR); and
the commercial paper Treasury spread (CP). The model is given in Equations (10) and (11).
Heteroscedasticity-consistent standard errors are in parentheses. Coefficients significant at
the 10%, 5%, and 1% levels are marked with *, **, and ***, respectively.
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that follow, we use the full sample, but it is important to keep in mind that

explanatory power is reduced by the extreme and unpredictable variation of

returns associated with the crisis and its aftermath.

There is some concern in the literature about structural instability of the

mean return regression in Table 1 (e.g., Welch and Goyal, 2008). In par-

ticular, variables such as DIV appear to exhibit nonstationarity associated

with structural shifts during the sample period, which may, in turn, account

for instability in the regression coefficients estimated over shorter sub-

samples. Lettau and Van Nieuwerburgh (2008) investigate this issue and

provide evidence of a shift in the mean of DIV to a lower level after 1991. To

incorporate this evidence, we construct a new independent variable which is

DIV adjusted for its mean within the two subsamples ��� up to an including

1991 and the period thereafter. Table 1, Panel C reports results for the

regression over the full sample using this adjusted dividend yield (DIV-

ADJ). The R-squared in the mean equation is somewhat higher than in the

corresponding regression with the unadjusted dividend yield in Panel A,

thus we chose this specification as our baseline, in-sample estimation.

The theoretical justification for the adjustment above would depend on

the underlying mechanism behind the structural shift in the dividend yield.

For example, if dividend yields declined because of a decline in risk aversion

and a corresponding decline in the required risk premium (in a representa-

tive agent setting), then such an adjustment would be inappropriate. The

declining dividend yield would reflect a decline in expected returns. How-

ever, in this case, the adjustment should not increase the explanatory power

of the regression. Alternatively, the decline in the dividend yield could

reflect a switch in corporate payout policy in favor of stock repurchases.

Boudoukh et al. (2007) examine this issue in great detail and present evi-

dence that adjusting for stock repurchases does increase the explanatory

power of predictive regressions. As confirmation of this evidence Table 1,

Panel D presents results for regressions with the dividend plus repurchase

yield (DIVþREP) as the independent variable. Specifically, we use the

annualDIVþREP series fromMichael Roberts’ website10 to compute just the

repurchase yield, i.e., the amount of stock repurchases divided by the market

capitalization, at the market level. For each month in our sample, we take a

weighted average of the relevant annual repurchase yields and add the

number to our dividend yield series. For example, for the 12-month dividend

yield that goes through March 1997, we add in 3/4 of the 1996 repurchase

10http://finance.wharton.upenn.edu/�mrrobert/
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yield and 1/4 of the 1997 repurchase yield.11 In terms of R-squared, the

results are a slight improvement over those in Panel C, which used the

statistically adjusted DIV. Of greater importance, the essential implications

of this analysis and the in-sample Sharpe ratio analysis that follows are

insensitive to the precise specification.

Of course, all these results must be considered in the context of the well

known problem with data snooping (see, for example Foster et al., 1997).

These concerns are mitigated somewhat by the fact that the predictor

variables have been used in the literature for two decades, or more, and by

the out-of-sample exercise conducted later in the paper.

Table 2 presents results of our second estimation methodology, i.e., direct

estimation of the conditional Sharpe ratio, using DIV-ADJ described above

for both the full sample and pre-crisis sample, although results for the

original DIV series and DIVþREP are similar. For both samples, DIV and

one-year Treasury rate are highly significant. The positive coefficient on the

dividend yield is consistent with the fact that this variable positively pre-

dicts the return and negatively predicts volatility (see Table 1). The nega-

tive coefficient on the one-year interest rate reflects its negative relation to

returns. The positive, albeit statistically insignificant, signs of the coeffi-

cients on DEF and CP are more difficult to reconcile with the earlier results

given the positive relation between these variables and volatility. Finally, for

the full sample, lagged realized volatility is a significant negative predictor of

Table 2. Direct estimation of the conditional Sharpe ratio.

Const. vt DEF DIV-ADJ 1YR CP R2

Full 0.823*** �0.052** 0.009 0.190*** �0.073*** 0.100 3.71%
Sample (0.141) (0.024) (0.124) (0.065) (0.016) (0.139)

Pre-Crisis 0.715*** �0.032 0.190 0.197*** �0.098*** 0.140 4.35%
Sample (0.145) (0.027) (0.141) (0.066) (0.019) (0.143)

Note: Regressions of the realized Sharpe ratio for the CRSP VW index on lagged explanatory
variables for the full sample, May 1953 to December 2010, and the pre-crisis sample, May
1953 to December 2007. The conditioning variables are lagged realized volatility (vt), the
Baa-Aaa spread (DEF), the adjusted dividend yield (DIV-ADJ), the one-year Treasury yield
(lYR), and the commercial paper Treasury spread (CP). The model is given in
Equation (15). Heteroscedasticity-consistent standard errors are in parentheses. Coefficients
significant at the 10%, 5%, and 1% levels are marked with *, **, and ***, respectively.

11The annual DIVþREP series ends in 2003, so we assume a constant repurchase yield
thereafter.
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the Sharpe ratio at the 5% level, which is consistent with the positive serial

correlation in realized volatility documented above.

Table 3 provides descriptive statistics for the four estimated conditional

Sharpe ratio series, for the realized Sharpe ratio, and for the first two con-

ditional moments of returns. There are several notable results. First, vari-

ation in the estimated conditional mean appears to dominate the variation in

the estimated conditional Sharpe ratios. The conditional mean is highly

correlated with the conditional Sharpe ratio estimates in which both

moments are allowed to vary, either explicitly or implicitly (#1, the ratio of

the conditional moments, and #4, the direct estimation), but the magni-

tudes of the correlations between these series and the conditional volatility

are much lower. Moreover, both the estimate using the ratio of the con-

ditional moments (#1) and the directly estimated conditional Sharpe ratio

Table 3. Realized and conditional Sharpe ratios ��� descriptive statistics.

Average Change

Mean Std Dev AC(1) Peak-Trough Trough-Peak

�̂t 0.549 0.836 0.876 1.193 �1.297

�̂t 3.603 1.328 0.745 0.783 �0.590

Ŝ1;t
0.185 0.311 0.928 0.248 �0.332

Ŝ2;t
0.166 0.043 0.780 �0.026 0.013

Ŝ3;t
0.152 0.232 0.876 0.331 �0.360

Ŝ4;t
0.313 0.236 0.906 0.242 �0.277

Stþ1 0.311 1.180 0.037 1.703 �1.408

Correlations

�̂t Ŝ1;t Ŝ2;t Ŝ3;t Ŝ4;t
Stþ1

�̂t �0.278 0.920 0.326 1.000 0.878 0.175

�̂t �0.358 �0.864 �0.278 �0.380 �0.076

Ŝ1;t
0.479 0.920 0.882 0.170

Ŝ2;t
0.326 0.460 0.072

Ŝ3;t
0.878 0.175

Ŝ4;t
0.200

Note : Descriptive statistics for the four, monthly, estimated conditional Sharpe
ratio series (Ŝ1;t � Ŝ4;tÞ, defined in Equations (12)�(14) and (16), respectively; the
estimated conditional mean (�̂t) and volatility (�̂t) of returns, defined in
Equations (8) and (9); and the realized Sharpe ratio (Stþ1Þ, defined in Equation (7).
AC(1) is the first order autocorrelation. \Average Change" denotes the average
difference between the series at successive peaks and troughs, or troughs and peaks,
of the business cycle as determined by the NBER. All estimates use the adjusted
dividend yield and are estimated over the full sample, May 1953 to December 2010.
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(#4) are highly correlated with the estimate in which the volatility is fixed at

its sample average (#3), with correlations of approximately 0.9. In contrast,

these same series have correlations of less than 0.5 with the estimate in which

the mean is fixed at its sample average (#2). This result is not an artifact

of the relative variation of the two conditional moments, since the con-

ditional volatility has a substantially higher standard deviation. Of course,

these are in-sample results. From an out-of-sample perspective, this

phenomenon might be bad news if the in-sample explanatory power is due to

overfitting of the conditional mean.

Second, all four estimated conditional Sharpe ratio series are positively

correlatedwith the realizedSharpe ratio. For the three estimates that allow for

variation in the conditional mean, these correlations are close to 0.2, some-

what more than twice the magnitude of the correlation with the estimate that

fixes the conditional mean (#2). Perhaps surprisingly, the correlation for the

estimate that fixes the conditional volatility (#3) is actuallymarginallyhigher

than that for the estimate that allows both moments to vary over time (#1).

These correlations are quite high given the sampling variation in the realized

Sharpe ratio. This variation, due in large part to the unexpected components

of returns and volatility, is apparent in the high standard deviation of the

realized Sharpe ratio and its low first order autocorrelation.

Third, the means of the Sharpe ratio estimates calculated from the ratio

of the individual moments (#1, #2, and #3) are approximately half as

larger as the mean of either the realized Sharpe ratio or the direct estimate.12

There is a Jensen’s inequality effect, but the primary reason for the differ-

ence lies in the time series properties of returns and volatility. Specifically,

the return and realized volatility series are relatively strongly negatively

correlated, with a correlation of�0.27, a phenomenon that has been called the

leverage effect.13 These series themselves are made up of two components ���
an expected component that is reflected in the conditional moments series,

and shocks. FromTable 3, the correlation between the conditionalmoments is

�0.28. This phenomenon is the well known and anomalous negative risk-

return relation at the aggregate level.14 It is this negative correlation that

12The means of these latter two series coincide by construction, i.e., the average fitted value
equals the mean of the dependent variable in a regression context.
13If equity is a levered claim on underlying assets, a negative shock to the value of the assets,
and therefore the equity, causes an increase in the volatility of the equity as it becomes more
levered, for a fixed debt claim.
14See, for example, Whitelaw (1994) for a detailed discussion of this issue in a similar fra-
mework to that used in this paper.

Time-Varying Sharpe Ratios and Market Timing � 479



causes the mean of the ratio of these moments (#1) to exceed the ratio of the

means of the twomoments, i.e., 0:18 > 0:55=3:60 ¼ 0:15. However, this effect

is even stronger for the realized Sharpe ratio because there is substantially

more variation in realized returns and volatility than in expected returns and

conditional volatility. In addition, the shocks to the two moments are more

negatively correlated than the moments, with a correlation between the

residuals from Equations (10) and (11) of �0.33. This negative correlation

between unexpected returns and shocks to volatility is consistent with a

volatility feedback effect, which, in turn, is consistent with a positive risk-

return tradeoff.15

A more formal way to address the relation between the estimated con-

ditional Sharpe ratios and the realized Sharpe ratio is to run a regression of

the latter on the former:

Stþ1 ¼ �þ �Ŝ i;t þ �i;tþ1; ð17Þ
where i indexes the estimated conditional Sharpe ratio series. Running this

regression for the direct estimation (#4) is meaningless, since the estimated

conditional Sharpe ratio comes from a regression of the realized ratio on a set

of predetermined variables. Therefore, such a regression will generate an

intercept of zero, a slope coefficient of one, and an R-squared equal to that of

the original regression. More generally, � ¼ 0 and � ¼ 1 are the conditions

for the forecast to be conditionally unbiased.

Table 4 presents estimation results for the regression in Equation (17) for

the three series constructed as the ratio of the moments. The regressions are

estimated over the full sample, including the financial crisis, and the fore-

casts are constructed using DIV-ADJ, although, as before, using an

alternative dividend yield series generates qualitatively similar inferences.

The key results are threefold. First, all the estimates have statistically sig-

nificant forecasting power for the realized Sharpe ratio in that the hypothesis

that the slope is zero can be rejected in all cases. Moreover, it is not possible

to reject the hypothesis that the slope is equal to one in each case. Second,

conditional unbiasedness can be rejected for series #1 and #3 due to the

statistically significant intercept in the regression. This result is hardly

surprising given the differences in means between the realized Sharpe ratio

and the forecasts as documented in Table 3. Finally the R-squareds are

relatively small, but, with the exception of the fixed mean estimate, they are

15See, for example, Guo andWhitelaw (2006) and Smith (2007) for illustrations of identifying
the risk-return tradeoff using the volatility feedback effect.
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comparable to the R-squared from the direct estimation (Table 2). In terms

of in-sample explanatory power, fixing the mean has serious negative con-

sequences, whereas fixing the variance has, if anything, a small positive

effect on the forecasting.

Given the significant and predictable time-variation in stock market

Sharpe ratios documented above, a natural question is how movements in

estimated Sharpe ratios correspond to fluctuations in economic activity.16

Figure 1 shows the estimated conditional Sharpe ratios and the NBER

business cycle peaks and troughs (recessions, i.e., the peak-to-trough phases

of the cycle, are marked by the shaded bars). There are only nine complete

business cycles within the sample period; therefore, conclusions should be

drawn with caution. Nevertheless, there appears to be striking cyclical vari-

ation in Sharpe ratios. Almost without exception, business cycle peaks cor-

respond to low Sharpe ratios and business cycle troughs to high Sharpe ratios.

The last two columns in the top panel of Table 3 provide one quantifi-

cation of this phenomenon. We calculate the difference between the con-

ditional Sharpe ratio at the peak of the cycle and the subsequent trough, and

then average these differences across the cycles in the sample. This average is

a measure of how much the Sharpe ratio changes during the course of a

recession. We also perform the same calculation from trough to peak, but, by

16Time-variations in both expected returns and volatility have been previously linked to the
business cycle. See, for example, Fama and French (1989) and Schwert (1989).

Table 4. Regressions of the realized Sharpe ratio on
conditional Sharpe ratios ��� in sample.

� � R2

Ŝ1;t
0.174*** 0.740*** 2.64%

(0.055) (0.180)

Ŝ2;t
�0.014 1.966** 0.51%

(0.164) (0.991)

Ŝ3;t
0.176*** 0.894*** 3.08%

(0.052) (0.178)

Note: Regressions of the monthly realized Sharpe ratio for
the CRSP VW index on three, monthly, estimated con-
ditional Sharpe ratio series (Ŝ1;t � Ŝ3;t), defined in
Equations (12)�(14), for the full sample, May 1953 to
December 2010. All estimates use the adjusted dividend
yield. Heteroscedasticity-consistent standard errors are in
parentheses. Coefficients significant at the 10%, 5%, and 1%
levels are marked with *, **, and ***, respectively.
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construction, this average difference is approximately the negative of the

change from peak to trough. The time from peak to trough (i.e., the con-

tractionary phase of the cycle) is short, averaging less than 12 months, but

the average increase in the monthly estimated rolling Sharpe ratio is large,

on the order of 0.25 for our unconstrained estimators (#1 and #4), which

would be greater than 0.8 on an annualized basis. Interestingly, both the

conditional mean and volatility increase from peak to trough, but the former

effect dominates.

The data indicate that the return/volatility tradeoff is significantly better

entering expansions than it is leaving expansions. To some extent, this result

is consistent with the theoretical results in Whitelaw (2000). At the end of

expansions, when the probability of shifting to a contraction is high, the

conditional volatility is also high. However, equity returns depend on whe-

ther a regime switch occurs, an event that is independent of the marginal

rate of substitution. Consequently, the correlation in Equation (5) is low and

so is the expected return. Clearly, this combination will yield the low Sharpe

ratios shown in Figure 1. The regime-shift model also generates a similar

Fig. 1. Estimated conditional Sharpe ratios.
Note: Monthly expected conditional Sharpe ratios (Ŝ1;t � Ŝ4;t), defined in Equations (12)�(14)
and (16), respectively. All estimates use the adjusted dividend yield and are estimated over the
full sample, May 1953�December 2010. NBER recessions are marked by shaded bars.
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prediction for transitions from contractions to expansions, but a decrease in

Sharpe ratios at this point in the cycle is not evident in the data. The one

mitigating factor in the model in Whitelaw (2000) is that regime switch

probabilities are much more stable within contractions. Consequently, the

volatility and expected return effects are smaller.

Figure 1 has several other notable features. With the exception of the

fixed-mean estimate, the conditional Sharpe ratios appear to coincide,

consistent with their high correlations in Table 3. The fixed-mean estimate

shows substantially less variation, consistent with its low standard deviation

in Table 3, and there is no strong business cycle pattern. The conditional

Sharpe ratios also go negative at various points in the sample, again with the

exception of the fixed mean series, i.e., the expected return on the market is

less than the risk-free rate. This result is somewhat puzzling, although

negative risk premiums are not theoretically precluded in the framework of

Section 2 (see Boudoukh et al., 1997). Moreover, these results are consistent

with the results in Kairys (1993), who uses commercial paper rates to predict

negative risk premiums.

4. Exploiting Predictable Variation

We now turn to an out-of-sample analysis of predictable variation in stock

market Sharpe ratios, using both rolling and expanding window regressions.

After examining the properties of the estimated conditional Sharpe ratios

and evaluating their forecasting power, we employ these forecasts to con-

struct simple market-timing strategies.

4.1. Out-of-sample forecasting

The previous section documents statistically significant time-variation in

conditional Sharpe ratios, and statistically and economically significant

predictive power for estimates based on a simple linear model. From a

practical perspective, however, the key issue is whether the empirical model

has economically significant out-of-sample predictive power. Unfortunately,

it is difficult to conduct a true out-of-sample test. The conditioning variables

are chosen based on their correlation with returns and volatility in a sample

that runs through April 1989, leaving over 20 years of new data, but there is

still the issue of how choices about which papers to write and publish create

their own data snooping problems. Nevertheless, it is worthwhile to consider

the predictive power of out-of-sample regressions.
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There are two possible ways to specify the out-of-sample regressions for

estimating the conditional Sharpe ratios. The first method is to choose a

fixed sample size and to run rolling regressions. That is, a fixed number of

observations are used to estimate each set of coefficients, and the estimation

window is moved forward by one month at a time. The advantage of this

approach is that if the coefficients vary over time, either because of mis-

specification of the empirical model or structural shifts, then the coefficients

from the rolling regressions will \adapt" to these changes. The second

method is to add the new monthly observation to the estimation dataset as

we move through time. As a result, the number of observations increases

through time, and the later coefficients of these cumulative regressions will

be less subject to estimation error if the empirical specification is correct.

An additional issue is the choice of DIV series. The DIV-ADJ series used

in the in-sample analysis relies on an in-sample estimation of the break point

in the original series (Lettau and Van Nieuwerburgh, 2008). Instead, for the

out-of-sample analysis, we use the DIVþREP series.

Themost natural way to evaluate these alternatives is to examine their out-

of-sample performance. For both the rolling and cumulative regressions, the

initial estimation period is chosen to be 10 years, i.e., 120 monthly obser-

vations from May 1953 to April 1963 are used to estimate the first set of

coefficients. These coefficients and the data on the explanatory variables from

April 1963 are then used to estimate the conditional moments of stock market

returns forMay1963.The estimation is then rolled forward onemonth, adding

the most recent observation for both the rolling and cumulative regressions,

but also dropping the oldest observation from the rolling regression. Both

techniques generate a series of 572 out-of-sample conditional Sharpe ratios.

Before turning to the out-of-sample forecasting power, one potentially

important issue that can be addressed using the rolling regressions is the

instability of the coefficient estimates. Unstable coefficients indicate either

structural shifts in the data, a misspecified model, or significant estimation

error. In the case of structural shifts, predictive power might be gained from

shortening the estimation period further, although there is a clear tradeoff

with estimation error as the number of observations decreases. In the case of

model misspecification, alternative specifications, specifically more flexible

functional forms, might prove useful, but these formulations will also likely

increase estimation error. Figure 2 shows the rolling coefficient estimates for

the conditional mean (Panel A), the conditional volatility (Panel B), and the

direct estimation of the Sharpe ratio (Panel C). Note that the date on the

x-axis refers to the last date in the estimation period, e.g., the coefficient for
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December 1978 is based on the ten years of data from January 1969 to

December 1978.

The graphs show a good deal of instability. In the mean equation, consider

the two variables that are significant in the in-sample regression ��� DIVþ
REP and the one-year Treasury rate (Table 1, Panel D). The coefficient on

DIVþREP ranges up to seven, with a small period of negative coefficients

associated with rise of the technology bubble in the mid to late 1990s. The

coefficient on the interest rate is predominantly negative, but there are

periods in the late 1990s and during the financial crisis when it is positive.

From an economic standpoint, the switching of the sign of the coefficient is

especially worrisome, but one must keep in mind the substantial sampling

error associated with a 10-year estimation window.

In the volatility equation, all the variables but the Treasury rate are

significant in the in-sample regression (Table 1, Panel D). The coefficient on
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(a) Panel A: Conditional Mean

Fig. 2. Estimated rolling regression coefficients.
Note: Estimated coefficients from l0-year rolling regressions for the conditional mean (Panel
A), the conditional volatility (Panel B) Equations (10) and (11), and the direct estimation of
the conditional Sharpe ratio (Panel C) Equation (15) of the CRSP VW portfolio. All esti-
mates use the dividend plus repurchase yield and cover the periods from May 1953�April
1963 through January 2001�December 2010.
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Fig. 2. (Continued)
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lagged realized volatility is clearly the most stable, illustrating the robust-

ness of the persistence of volatility. In contrast, the coefficients on the

default spread, DIVþREP, and CP switch signs at least twice, at different

points in the sample. Again, however, these results should be considered in

the context of a regression over a short sample period with substantial

estimation error.

Direct estimation of the Sharpe ratio does not appear to improve the

stability of the rolling 10-year coefficients. The two significant variables from

the in-sample regression in Table 2, DIVþREP and the Treasury rate, show

patterns that are remarkably similar to those from the estimation of the

conditional mean. Given these variations, any out-of-sample forecasting

power of the rolling regression might perhaps be even more surprising.

Table 5 addresses the issue of out-of-sample forecasting power directly.

Panel A presents results from the regression of the realized Sharpe ratio on the

estimated conditional Sharpe ratios for the period May 1963 to December

2010, using both the rolling window and expanding window regressions

described above. These regressions are comparable to the in-sample

regressions in Table 4, except that they omit the first 10 years of the sample

due to the necessity of using this window to estimate the first set of coefficients.

There is definite evidence of forecasting power. All the slope coefficients

are positive, i.e., the realized Sharpe ratio is positively related to the esti-

mated conditional Sharpe ratio, and three of the four are statistically sig-

nificant for the rolling regressions. While the magnitudes of the slope

coefficients are comparable for the expanding window regressions, only two

of the four coefficients are significant at the 10% level. The R-squareds for

the rolling regressions reach just over 1%, which is only slightly greater than

one-third of the magnitude in the comparable in-sample regressions.

Of the four estimated Sharpe ratios, statistical evidence of forecasting

power is weakest for the estimate that fixes the mean return at its value in

the estimation window.While the slope coefficient is largest for this series, the

magnitude reflects the lack of variation in the series. For neither the rolling nor

expanding window regressions is the coefficient statistically significant, and

the R-squareds are less than 0.5%. This result coincides with the in-sample

evidence, i.e., time-variation in the conditional expected return appears to be

the dominant component of variation in the Sharpe ratio.

Finally, there is also substantial evidence of overfitting across all the series.

The hypothesis that the forecast is conditionally unbiased, i.e., an intercept of

zero and a slope of one, can be rejected for a significant majority of the series,

and the failure to reject for the others is due to lack of power, i.e., large
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standard errors. Moreover, all the slope coefficients are less than one. This

overfitting is illustrated clearly in Table 5, Panel B. This panel reports what

we call the predictive R-squared for each forecast series. Specifically, we cal-

culate an R-squared measure imposing conditional unbiasedness:

R2 ¼ 1�
P ðStþ1 � Ŝ i;tÞ2P ðStþ1 � �SÞ2

; ð18Þ

Table 5. Out-of-sample analysis.

Rolling Expanding

� � R2 � � R2

Panel A: Regressions of the Realized Sharpe Ratios on Estimated Conditional Sharpe Ratio

Ŝ1;t
0.219*** 0.257** 0.99% 0.226*** 0.238 0.50%
(0.050) (0.106) (0.052) (0.148)

Ŝ2;t
0.155** 0.638 0.42% 0.173 0.405 0.12%
(0.078) (0.419) (0.107) (0.521)

Ŝ3;t
0.224*** 0.237*** 1.21% 0.224*** 0.230** 0.71%
(0.049) (0.084) (0.051) (0.116)

Ŝ4;t
0.224*** 0.063*** 1.07% 0.223*** 0.072* 0.62%
(0.049) (0.023) (0.052) (0.039)

Rolling Expanding

Panel B: Predictive R-Squareds

Ŝ1;t
�8.48% �6.05%

Ŝ2;t
�0.47% �0.37%

Ŝ3;t
�12.66% �8.48%

Ŝ4;t
�233.90% �105.25%

Note: Panel A presents results from regressions of the
monthly realized Sharpe ratio for the CRSP VW
index on four, monthly, estimated conditional
Sharpe ratio series (Ŝ1;t � Ŝ4;tÞ, defined in
Equations (12)�(14) and (16), estimated over roll-
ing, 10-year windows. All estimates use the dividend
plus repurchase yield and cover the periods fromMay
1953�April 1963 through January 2001�December
2010. Heteroscedasticity-consistent standard errors
are in parentheses. Coefficients significant at the
10%, 5%, and 1% levels are marked with *, **, and
***, respectively. Panel B presents predictive
R-squareds, as defined in Equation (18), for the same
four series.
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where�S is themean realized Sharpe ratio.ThepredictiveR-squareds inPanel

B are uniformly negative. In other words, while the conditional Sharpe ratios

have forecasting power for the realized Sharpe ratio, the unconditional mean

provides a better fit than does the conditional Sharpe ratio.

4.2. Trading strategies

While the above results clearly demonstrate economically and statistically

significant out-of-sample forecasting power for the realized Sharpe ratio,

they are not linked directly to a feasible trading strategy. The possible set of

trading strategies is huge; nevertheless, it is worthwhile to look at the per-

formance of a few stylized strategies. Consider the strategy of estimating the

conditional Sharpe ratio using the 10-year rolling regression and comparing

this number to a fixed threshold. If the estimated conditional Sharpe ratio is

larger than the threshold, then invest in the stock market; if it is smaller,

then invest in the risk-free asset. We then consider the Sharpe ratio of the

months when the strategy is invested in equities. This ratio can easily be

compared to a buy-and-hold strategy that always holds the market.17

Table 6 reports the results from executing four strategies: a buy-and-hold

strategy and three market-timing strategies where the thresholds for

investing in the market are three different pre-specified conditional Sharpe

ratio levels��� 0.0, 0.1, and 0.2. Again, we consider all four of our conditional

Sharpe ratio series and we use DIVþREP throughout. The third column of

the table gives the number of months, out of a possible 572, in which the

strategy is invested in the market. The table also shows the mean and

average realized volatility of monthly stock market returns for the months in

which the market is held. For the buy-and-hold strategy, these are the

sample averages for the full time period. The last two columns present

statistics calculated from monthly returns (rather than the daily returns

that are used to compute realized volatility). The ex post Sharpe ratio is the

mean excess monthly return over the volatility of the return when the

strategy is in the market, while ex post volatility is just the denominator of

this ratio.

17These market-timing strategies ignore both transaction costs and information in the
magnitude of the conditional Sharpe ratios relative to the threshold. A more sophisticated,
and potentially better performing, strategy might involve time-varying market weights that
depend on the prior position in the market and the relative magnitude of the conditional
Sharpe ratio. Nevertheless, the stylized strategy is sufficient to illustrate the extent of pre-
dictable variation.
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There are several notable results. First, there is consistent evidence of

forecasting power. Of the 12 strategies (four predictors� three thresholds),

eleven have Sharpe ratios that exceed that of the buy-and-hold. The one

exception is the fixed mean predictor with a threshold of 0. Moreover, across

the four signals, three produce monotonically increasing Sharpe ratios as the

threshold increases. For the fourth, the direct estimation of the Sharpe ratio,

there is only a very small violation of monotonicity. Perhaps of greatest

importance, the increase in Sharpe ratio associated with the strategies is

economically large. For example, for the estimate constructed as the ratio of

the conditional moments, where both moments vary over time, the Sharpe

ratios of the strategies exceed that of the buy-and-hold by 30�45%. These

strategies are invested in the stock market in 36�57% of the months in

the sample.

Second, for the strategies that allow the expected return to vary over time

(#1 and #3), the forecasting power is coming primarily from this variation.

Mean returns increase monotonically with the threshold, and the average

Table 6. Trading strategies.

Signal
No. of
Months

Mean
Return

Avg. Realized
Vol.

Avg. Realized
SR

Ex post
SR

Ex post
Vol.

Full sample 572 0.448 3.786 0.252 0.099 4.522

Ŝ1;t CSR > 0.0 326 0.827 3.870 0.328 0.184 4.507
CSR > 0.1 267 0.955 3.920 0.350 0.209 4.562
CSR > 0.2 207 1.111 3.967 0.365 0.250 4.441

Ŝ2;t CSR > 0.0 493 0.332 3.627 0.248 0.078 4.268
CSR > 0.1 384 0.422 3.357 0.285 0.104 4.045
CSR > 0.2 181 0.400 2.756 0.351 0.113 3.539

Ŝ3;t CSR > 0.0 326 0.827 3.870 0.328 0.184 4.507
CSR > 0.1 269 0.961 3.930 0.353 0.207 4.639
CSR > 0.2 210 1.082 4.178 0.367 0.225 4.811

Ŝ4;t CSR > 0.0 326 0.827 3.870 0.328 0.184 4.507
CSR > 0.1 301 0.873 3.888 0.337 0.192 4.550
CSR > 0.2 289 0.872 3.925 0.335 0.189 4.609

Note: Descriptive statistics for trading strategies that hold the market portfolio when the
estimated conditional Sharpe ratio exceeds the given threshold. The estimated conditional
Sharpe ratio series (Ŝ1;t � Ŝ4;tÞ, are defined in Equations (12)�(14) and (16) and estimated
over rolling, 10-year windows. All estimates use the dividend plus repurchase yield and cover
the periods from May 1953�April 1963 through January 2001�December 2010. The mean
return and average realized volatility and Sharpe ratio are for those months when the
strategy is long the market. The ex post Sharpe ratio is the Sharpe ratio calculated using
monthly returns for these months, and the ex post volatility is the volatility of these monthly
returns.
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realized volatility varies little, increasing as the Sharpe ratio increases if

anything. Interestingly, the fixed mean strategy is able to identify periods

with low realized volatilities and hence high realized Sharpe ratios. However,

this predictive power is much less marked for volatilities and Sharpe ratios

calculated using monthly returns. For the direct estimation of the Sharpe

ratio, the threshold appears to be the least important. The number of

months invested changes less as the threshold varies and the performance

statistics also vary little.

Overall, the results confirm the earlier conclusions from both the in-

sample and out-of-sample analyses, i.e., that there is economically signifi-

cant, predictable variation in stock market Sharpe ratios.

5. Conclusion

This paper demonstrates the ability of relatively straightforward linear

specifications, of either the conditional mean and volatility of equity returns

or of the Sharpe ratio directly, to predict dramatic time-variation in

monthly, stock market Sharpe ratios. This predictability is evident both in-

sample and out-of-sample, where market-timing strategies outperform a

buy-and-hold strategy in terms of ex post Sharpe ratios. This evidence

provides further support for the contention that the mean and volatility of

stock market returns do not move together.

Variations of the magnitude documented are inconsistent with the con-

ditional CAPM and related models that imply a close to constant market

Sharpe ratio. One possible explanation is that the results are due to market

irrationality or inefficiency. However, the apparent relation between vari-

ation in Sharpe ratios and the business cycle suggests the possibility of an

economic interpretation. Whitelaw (2000) provides a rational expectations,

general equilibrium model that is broadly consistent with the empirical

evidence. In this model, discrete shifts between expansions and contractions

overturn the standard return/volatility relation. Alternatively, large fluc-

tuations in risk aversion, as in Campbell and Cochrane (1999), could also

account for significant time-variations in Sharpe ratios. Further research in

this area is warranted.

While the empirical evidence provides insights into the time series

properties of equity returns and their underlying economics, it also has

implications in other areas. In particular, substantial, predictable time-

variation in market Sharpe ratios casts doubt on the ability of the volatility

of even broadly diversified portfolios to proxy for priced risk. Consequently,
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standard measures of investment performance and traditional portfolio asset

allocation rules may have to be re-thought.
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